Okay.
I also took a look at the distribution where I did the card ID mod 3. It’s possibly got some bias, but it’s close enough to random that I’m happy with this for demonstration purposes.
With data from sometime on October 12, I ran the optimizer here Google Colab for my weights on my whole collection, and then on language cards vs trivia cards
Whole collection weights: [0.5317, 1.4336, 3.0735, 29.2601, 3.7603, 2.1585, 2.2375, 0.0006, 1.3592, 0.1098, 1.4773, 1.5683, 0.1349, 0.367, 1.9989, 0.3155, 6.9208]
Language weights: [0.6436, 2.9047, 3.8645, 22.5929, 5.1363, 1.6328, 1.5416, 0.0051, 1.4432, 0.1, 1.0946, 2.0075, 0.1539, 0.3865, 1.9886, 0.2838, 6.3841],
Trivia weights: [0.7127, 2.1688, 4.8475, 27.7297, 3.2037, 2.0675, 2.0751, 0.0, 1.5099, 0.1522, 1.3569, 1.7759, 0.1379, 0.3721, 1.9932, 0.2681, 8.269]
Since the weights look pretty different from default (although I don’t know how different it’ll actually be in practice), and I’m curious to know how much it’ll actually affect things, I rolled a die and said:
FSRS default weights for card IDs = 0 mod 3
SM2 for card IDs = 1 mod 3
FSRS trained weights = 2 mod 3
I have all the pieces I need, so I’m moving forward with this.
Starting with all my reviews on October 13, I’m running with the custom study code that I think will do what I’m trying to do, and if everything goes well/nothing goes wrong, I’ll report back in a month (maybe), a few months, and a year about how things compare.
I’m skipping the initial rescheduling part.
Here’s the untested modified custom study code I’m using; I may edit it if I run into issues in the next few days. If anyone wants to take a look and see if it’s doing what I think it’s doing, I’d really appreciate it, but also even if no one reviews this I’m going to go for it and see what happens. Worst case scenario, I give up and in a couple months I’m asking how to clear customData.
(I added the stuff at the beginning because my learning steps are 10m, 12h, 10m, 12h. I moved some stuff around to accommodate selecting weights differently as well.)
// Personal code:
// makes the hard learning step equal to the good learning step if it's more.
if(states.hard.normal && states.hard.normal.learning && states.good.normal && states.good.normal.learning && states.hard.normal.learning.scheduledSecs > states.good.normal.learning.scheduledSecs) {
states.hard.normal.learning.scheduledSecs = states.good.normal.learning.scheduledSecs;
}
if(states.hard.normal && states.hard.normal.relearning && states.hard.normal.relearning.learning && states.good.normal && states.good.normal.relearning && states.good.normal.relearning.learning && states.hard.normal.relearning.learning.scheduledSecs > states.good.normal.relearning.learning.scheduledSecs) {
states.hard.normal.relearning.learning.scheduledSecs = states.good.normal.relearning.learning.scheduledSecs;
}
if(states.hard.filtered && states.hard.filtered.rescheduling && states.hard.filtered.rescheduling.originalState && states.hard.filtered.rescheduling.originalState.learning && states.good.filtered && states.good.filtered.rescheduling && states.good.filtered.rescheduling.originalState && states.good.filtered.rescheduling.originalState.learning && states.hard.filtered.rescheduling.originalState.learning.scheduledSecs > states.good.filtered.rescheduling.originalState.learning.scheduledSecs) {
states.hard.filtered.rescheduling.originalState.learning.scheduledSecs = states.good.filtered.rescheduling.originalState.learning.scheduledSecs;
}
if(states.hard.filtered && states.hard.filtered.rescheduling && states.hard.filtered.rescheduling.originalState && states.hard.filtered.rescheduling.originalState.relearning && states.hard.filtered.rescheduling.originalState.relearning.learning && states.good.filtered && states.good.filtered.rescheduling && states.good.filtered.rescheduling.originalState && states.good.filtered.rescheduling.originalState.relearning && states.good.filtered.rescheduling.originalState.relearning.learning && states.hard.filtered.rescheduling.originalState.relearning.learning.scheduledSecs > states.good.filtered.rescheduling.originalState.relearning.learning.scheduledSecs) {
states.hard.filtered.rescheduling.originalState.relearning.learning.scheduledSecs = states.good.filtered.rescheduling.originalState.relearning.learning.scheduledSecs;
}
// FSRS4Anki v4.5.6 Scheduler Qt6
set_version();
// The latest version will be released on https://github.com/open-spaced-repetition/fsrs4anki/releases/latest
// Configuration Start
// FSRS supports displaying memory states of cards.
// Enable it for debugging if you encounter something wrong.
const display_memory_state = true;
const deckParams = [
{
// Default parameters of FSRS4Anki for global
"deckName": "global config for FSRS4Anki",
"w": [0.4, 0.6, 2.4, 5.8, 4.93, 0.94, 0.86, 0.01, 1.49, 0.14, 0.94, 2.18, 0.05, 0.34, 1.26, 0.29, 2.61],
// The above parameters can be optimized via FSRS4Anki optimizer.
// For details about the parameters, please see: https://github.com/open-spaced-repetition/fsrs4anki/wiki/The-Algorithm
// User's custom parameters for global
"requestRetention": 0.9, // recommended setting: 0.75 ~ 0.95
"maximumInterval": 36500,
// FSRS only modifies the long-term scheduling. So (re)learning steps in deck options work as usual.
// I recommend setting steps shorter than 1 day.
},
{
"deckName": "Top::Language",
"w": [0.6436, 2.9047, 3.8645, 22.5929, 5.1363, 1.6328, 1.5416, 0.0051, 1.4432, 0.1, 1.0946, 2.0075, 0.1539, 0.3865, 1.9886, 0.2838, 6.3841],
"requestRetention": 0.9,
"maximumInterval": 36500,
},
{
"deckName": "Top::Trivia",
"w": [0.7127, 2.1688, 4.8475, 27.7297, 3.2037, 2.0675, 2.0751, 0.0, 1.5099, 0.1522, 1.3569, 1.7759, 0.1379, 0.3721, 1.9932, 0.2681, 8.269],
"requestRetention": 0.9,
"maximumInterval": 36500,
},
{
"deckName": "Top",
"w": [0.5317, 1.4336, 3.0735, 29.2601, 3.7603, 2.1585, 2.2375, 0.0006, 1.3592, 0.1098, 1.4773, 1.5683, 0.1349, 0.367, 1.9989, 0.3155, 6.9208],
"requestRetention": 0.9,
"maximumInterval": 36500,
}
];
// To turn off FSRS in specific decks, fill them into the skip_decks list below.
// Please don't remove it even if you don't need it.
const skip_decks = ["MainDeck3", "MainDeck4::SubDeck"];
// "Fuzz" is a small random delay applied to new intervals to prevent cards from
// sticking together and always coming up for review on the same day
const enable_fuzz = true;
// Configuration End
debugger;
// display if FSRS is enabled
if (display_memory_state) {
const prev = document.getElementById('FSRS_status')
if (prev) { prev.remove(); }
var fsrs_status = document.createElement('span');
fsrs_status.innerHTML = "<br>FSRS enabled";
fsrs_status.id = "FSRS_status";
fsrs_status.style.cssText = "font-size:12px;opacity:0.5;font-family:monospace;text-align:left;line-height:1em;";
document.body.appendChild(fsrs_status);
document.getElementById("qa").style.cssText += "min-height:50vh;";
}
let params = {};
// Skip the SM2 ones.
switch(String(get_experiment_category())) {
case "SM2":
if(display_memory_state) {
fsrs_status.innerHTML = fsrs_status.innerHTML.replace("FSRS enabled", "FSRS disabled (SM2)");
}
return;
break;
case "FSRS Default Weights":
params = deckParams[0]
if(display_memory_state) {
fsrs_status.innerHTML += "<br>Default Weights";
}
break;
case "FSRS Trained Weights":
// get the name of the card's deck
if (deck_name = get_deckname()) {
if (display_memory_state) {
fsrs_status.innerHTML += "<br>Deck name: " + deck_name;
}
for (const i of skip_decks) {
if (deck_name.startsWith(i)) {
if(display_memory_state) {
fsrs_status.innerHTML = fsrs_status.innerHTML.replace("FSRS enabled", "FSRS disabled");
}
return;
}
}
// Arrange the deckParams of sub-decks in front of their parent decks.
deckParams.sort(function(a, b) {
return -a.deckName.localeCompare(b.deckName);
});
for (let i = 0; i < deckParams.length; i++) {
if (deck_name.startsWith(deckParams[i]["deckName"])) {
params = deckParams[i];
break;
}
}
} else {
if (display_memory_state) {
fsrs_status.innerHTML += "<br>Deck name not found";
}
}
if (Object.keys(params).length === 0) {
params = deckParams.find(deck => deck.deckName === "global config for FSRS4Anki");
}
break
default:
fsrs_status.innerHTML += "<br>DID NOT GET EXPERIMENT CATEGORY";
return
}
var w = params["w"];
var requestRetention = params["requestRetention"];
var maximumInterval = params["maximumInterval"];
// auto-calculate intervalModifier
const intervalModifier = 9 * (1 / requestRetention - 1);
// global fuzz factor for all ratings.
const fuzz_factor = set_fuzz_factor();
const ratings = {
"again": 1,
"hard": 2,
"good": 3,
"easy": 4
};
// For new cards
if (is_new()) {
init_states();
const good_interval = next_interval(customData.good.s);
const easy_interval = Math.max(next_interval(customData.easy.s), good_interval + 1);
if (states.good.normal?.review) {
states.good.normal.review.scheduledDays = good_interval;
}
if (states.easy.normal?.review) {
states.easy.normal.review.scheduledDays = easy_interval;
}
// For learning/relearning cards
} else if (is_learning()) {
// Init states if the card didn't contain customData
if (is_empty()) {
init_states();
}
const good_interval = next_interval(customData.good.s);
const easy_interval = Math.max(next_interval(customData.easy.s), good_interval + 1);
if (states.good.normal?.review) {
states.good.normal.review.scheduledDays = good_interval;
}
if (states.easy.normal?.review) {
states.easy.normal.review.scheduledDays = easy_interval;
}
} else if (is_review()) {
// Convert the interval and factor to stability and difficulty if the card didn't contain customData
if (is_empty()) {
convert_states();
}
const interval = states.current.normal?.review.elapsedDays ? states.current.normal.review.elapsedDays : states.current.filtered.rescheduling.originalState.review.elapsedDays;
const last_d = customData.again.d;
const last_s = customData.again.s;
const retrievability = Math.pow(1 + interval / (9 * last_s), -1)
if (display_memory_state) {
fsrs_status.innerHTML += "<br>D: " + last_d + "<br>S: " + last_s + "<br>R: " + (retrievability * 100).toFixed(2) + "%";
}
customData.again.d = next_difficulty(last_d, "again");
customData.again.s = next_forget_stability(customData.again.d, last_s, retrievability);
customData.hard.d = next_difficulty(last_d, "hard");
customData.hard.s = next_recall_stability(customData.hard.d, last_s, retrievability, "hard");
customData.good.d = next_difficulty(last_d, "good");
customData.good.s = next_recall_stability(customData.good.d, last_s, retrievability, "good");
customData.easy.d = next_difficulty(last_d, "easy");
customData.easy.s = next_recall_stability(customData.easy.d, last_s, retrievability, "easy");
let hard_interval = next_interval(customData.hard.s);
let good_interval = next_interval(customData.good.s);
let easy_interval = next_interval(customData.easy.s);
hard_interval = Math.min(hard_interval, good_interval)
good_interval = Math.max(good_interval, hard_interval + 1);
easy_interval = Math.max(easy_interval, good_interval + 1);
if (states.hard.normal?.review) {
states.hard.normal.review.scheduledDays = hard_interval;
}
if (states.good.normal?.review) {
states.good.normal.review.scheduledDays = good_interval;
}
if (states.easy.normal?.review) {
states.easy.normal.review.scheduledDays = easy_interval;
}
}
function constrain_difficulty(difficulty) {
return Math.min(Math.max(+difficulty.toFixed(2), 1), 10);
}
function apply_fuzz(ivl) {
if (!enable_fuzz || ivl < 2.5) return ivl;
ivl = Math.round(ivl);
let min_ivl = Math.max(2, Math.round(ivl * 0.95 - 1));
let max_ivl = Math.round(ivl * 1.05 + 1);
if (is_review()) {
const scheduledDays = states.current.normal?.review.scheduledDays ? states.current.normal.review.scheduledDays : states.current.filtered.rescheduling.originalState.review.scheduledDays;
if (ivl > scheduledDays) {
min_ivl = Math.max(min_ivl, scheduledDays + 1);
}
}
return Math.floor(fuzz_factor * (max_ivl - min_ivl + 1) + min_ivl);
}
function next_interval(stability) {
const new_interval = apply_fuzz(stability * intervalModifier);
return Math.min(Math.max(Math.round(new_interval), 1), maximumInterval);
}
function next_difficulty(d, rating) {
let next_d = d - w[6] * (ratings[rating] - 3);
return constrain_difficulty(mean_reversion(w[4], next_d));
}
function mean_reversion(init, current) {
return w[7] * init + (1 - w[7]) * current;
}
function next_recall_stability(d, s, r, rating) {
let hardPenalty = rating === "hard" ? w[15] : 1;
let easyBonus = rating === "easy" ? w[16] : 1;
return +(s * (1 + Math.exp(w[8]) *
(11 - d) *
Math.pow(s, -w[9]) *
(Math.exp((1 - r) * w[10]) - 1) *
hardPenalty *
easyBonus)).toFixed(2);
}
function next_forget_stability(d, s, r) {
return +Math.min(w[11] *
Math.pow(d, -w[12]) *
(Math.pow(s + 1, w[13]) - 1) *
Math.exp((1 - r) * w[14]), s).toFixed(2);
}
function init_states() {
customData.again.d = init_difficulty("again");
customData.again.s = init_stability("again");
customData.hard.d = init_difficulty("hard");
customData.hard.s = init_stability("hard");
customData.good.d = init_difficulty("good");
customData.good.s = init_stability("good");
customData.easy.d = init_difficulty("easy");
customData.easy.s = init_stability("easy");
}
function init_difficulty(rating) {
return +constrain_difficulty(w[4] - w[5] * (ratings[rating] - 3)).toFixed(2);
}
function init_stability(rating) {
return +Math.max(w[ratings[rating] - 1], 0.1).toFixed(2);
}
function convert_states() {
const scheduledDays = states.current.normal ? states.current.normal.review.scheduledDays : states.current.filtered.rescheduling.originalState.review.scheduledDays;
const easeFactor = states.current.normal ? states.current.normal.review.easeFactor : states.current.filtered.rescheduling.originalState.review.easeFactor;
const old_s = +Math.max(scheduledDays, 0.1).toFixed(2);
const old_d = constrain_difficulty(11 - (easeFactor - 1) / (Math.exp(w[8]) * Math.pow(old_s, -w[9]) * (Math.exp(0.1 * w[10]) - 1)));
customData.again.d = old_d;
customData.again.s = old_s;
customData.hard.d = old_d;
customData.hard.s = old_s;
customData.good.d = old_d;
customData.good.s = old_s;
customData.easy.d = old_d;
customData.easy.s = old_s;
}
function is_new() {
if (states.current.normal?.new !== undefined) {
if (states.current.normal?.new !== null) {
return true;
}
}
if (states.current.filtered?.rescheduling?.originalState !== undefined) {
if (Object.hasOwn(states.current.filtered?.rescheduling?.originalState, 'new')) {
return true;
}
}
return false;
}
function is_learning() {
if (states.current.normal?.learning !== undefined) {
if (states.current.normal?.learning !== null) {
return true;
}
}
if (states.current.filtered?.rescheduling?.originalState !== undefined) {
if (Object.hasOwn(states.current.filtered?.rescheduling?.originalState, 'learning')) {
return true;
}
}
if (states.current.normal?.relearning !== undefined) {
if (states.current.normal?.relearning !== null) {
return true;
}
}
if (states.current.filtered?.rescheduling?.originalState !== undefined) {
if (Object.hasOwn(states.current.filtered?.rescheduling?.originalState, 'relearning')) {
return true;
}
}
return false;
}
function is_review() {
if (states.current.normal?.review !== undefined) {
if (states.current.normal?.review !== null) {
return true;
}
}
if (states.current.filtered?.rescheduling?.originalState !== undefined) {
if (Object.hasOwn(states.current.filtered?.rescheduling?.originalState, 'review')) {
return true;
}
}
return false;
}
function is_empty() {
return !customData.again.d | !customData.again.s | !customData.hard.d | !customData.hard.s | !customData.good.d | !customData.good.s | !customData.easy.d | !customData.easy.s;
}
function set_version() {
const version = "v4.5.6";
customData.again.v = version;
customData.hard.v = version;
customData.good.v = version;
customData.easy.v = version;
}
function get_deckname() {
if (typeof ctx !== 'undefined' && ctx.deckName) {
return ctx.deckName;
} else if (document.getElementById("deck") !== null && document.getElementById("deck").getAttribute("deck_name")) {
return document.getElementById("deck").getAttribute("deck_name");
} else {
return null;
}
}
function get_seed() {
if (!customData.again.seed | !customData.hard.seed | !customData.good.seed | !customData.easy.seed) {
if (typeof ctx !== 'undefined' && ctx.seed) {
return ctx.seed;
} else {
return document.getElementById("qa").innerText;
}
} else {
return customData.good.seed;
}
}
function set_fuzz_factor() {
// Note: Originally copied from seedrandom.js package (https://github.com/davidbau/seedrandom)
!function(f,a,c){var s,l=256,p="random",d=c.pow(l,6),g=c.pow(2,52),y=2*g,h=l-1;function n(n,t,r){function e(){for(var n=u.g(6),t=d,r=0;n<g;)n=(n+r)*l,t*=l,r=u.g(1);for(;y<=n;)n/=2,t/=2,r>>>=1;return(n+r)/t}var o=[],i=j(function n(t,r){var e,o=[],i=typeof t;if(r&&"object"==i)for(e in t)try{o.push(n(t[e],r-1))}catch(n){}return o.length?o:"string"==i?t:t+"\0"}((t=1==t?{entropy:!0}:t||{}).entropy?[n,S(a)]:null==n?function(){try{var n;return s&&(n=s.randomBytes)?n=n(l):(n=new Uint8Array(l),(f.crypto||f.msCrypto).getRandomValues(n)),S(n)}catch(n){var t=f.navigator,r=t&&t.plugins;return[+new Date,f,r,f.screen,S(a)]}}():n,3),o),u=new m(o);return e.int32=function(){return 0|u.g(4)},e.quick=function(){return u.g(4)/4294967296},e.double=e,j(S(u.S),a),(t.pass||r||function(n,t,r,e){return e&&(e.S&&v(e,u),n.state=function(){return v(u,{})}),r?(c[p]=n,t):n})(e,i,"global"in t?t.global:this==c,t.state)}function m(n){var t,r=n.length,u=this,e=0,o=u.i=u.j=0,i=u.S=[];for(r||(n=[r++]);e<l;)i[e]=e++;for(e=0;e<l;e++)i[e]=i[o=h&o+n[e%r]+(t=i[e])],i[o]=t;(u.g=function(n){for(var t,r=0,e=u.i,o=u.j,i=u.S;n--;)t=i[e=h&e+1],r=r*l+i[h&(i[e]=i[o=h&o+t])+(i[o]=t)];return u.i=e,u.j=o,r})(l)}function v(n,t){return t.i=n.i,t.j=n.j,t.S=n.S.slice(),t}function j(n,t){for(var r,e=n+"",o=0;o<e.length;)t[h&o]=h&(r^=19*t[h&o])+e.charCodeAt(o++);return S(t)}function S(n){return String.fromCharCode.apply(0,n)}if(j(c.random(),a),"object"==typeof module&&module.exports){module.exports=n;try{s=require("crypto")}catch(n){}}else"function"==typeof define&&define.amd?define(function(){return n}):c["seed"+p]=n}("undefined"!=typeof self?self:this,[],Math);
// MIT License
// Copyright 2019 David Bau.
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
let seed = get_seed();
const generator = new Math.seedrandom(seed);
const fuzz_factor = generator();
seed = Math.round(fuzz_factor * 10000);
customData.again.seed = (seed + 1) % 10000;
customData.hard.seed = (seed + 2) % 10000;
customData.good.seed = (seed + 3) % 10000;
customData.easy.seed = (seed + 4) % 10000;
return fuzz_factor;
}
// Added for experiment purposes
function get_experiment_category() {
if(!customData.experiment_category) {
let card_id = Math.floor(Number(ctx.seed)/256); // it's <<8, roughly
customData.experiment_card_id = card_id;
switch(card_id%3) {
case 0:
customData.experiment_category = "FSRS Default Weights";
break;
case 1:
customData.experiment_category = "SM2";
break;
case 2:
customData.experiment_category = "FSRS Trained Weights";
break;
default:
if(display_memory_state) {
fsrs_status.innerHTML += "Error setting initial category!";
}
customData.experiment_category = "SM2";
}
}
return customData.experiment_category;
}
if(display_memory_state) {
fsrs_status.innerHTML += "Done!";
}
I hope to be able to report back with results in a year!